

APPLICATION NOTE

TEA2018A - TEA2019 FLYBACK SWITCH MODE POWER SUPPLY IMPLEMENTATION

BY J-Y. COUET & T. PIERRE

SUMMARY		
1	INTRODUCTION.	2
II	TABLE OF UNITS AND SYMBOLS.	3
Ш	CURRENT MODE REGULATION	3
III.1	DESCRIPTION	3
IV	FUNCTIONAL DESCRIPTION OF TEA2018A	4
IV.1	BLOCK DIAGRAM	4
IV.2	OSCILLATOR AND MAXIMUM DUTY CYCLE	5
IV.2.1 IV.2.2	Simplified Diagram	5 5
IV.3	ERROR AMPLIFIER	6
IV.3.1	Functional Behaviour on Low-load	6
IV.4	CURRENT MEASUREMENT & LIMITATION	6
IV.4.1	Disabling the Current Monitoring Function	7
IV.5	DEMAGNETIZATION MONITORING	7
IV.6	THERMAL PROTECTION	7
IV.7	TEA2018A BEHAVIOUR AS A FUNCTION OF V _{CC}	7
IV.8	OUTPUT STAGE (POWER TRANSISTOR BASE DRIVE)	9
IV.8.1 IV.8.2	Transistor Turn-on Proportional Base Drive	9 9
IV.8.3 IV.8.4	Transistor Turn-off. Minimum Conduction Time	9 10
v	APPLICATION EXAMPLE	10
V.1	CUSTOMIZED APPLICATION DESIGN.	10
V.1.1	Specifications	10
V.1.2	Calculation of Power Elements	10
V.1.3 V.1.4	Demagnetization Sensing	10
V.1.4.a	Risk of flux runaway without demagnetization sensing	10
V.1.4.b	Implementing the demagnetization sensing function	10
V.1.4.C V 1 4 d	Transformation ratio considerations	11
V.1.5	Oscillator.	13
V.1.6 V 1 7	Power Transistor Base Drive	13 13
V.1.7.a	Positive self-supply : V _{CC}	13
V.1.7.b V.1.8	Negative self-supply: V ⁻	14 14
V.1.9	Operation under overload & short-circuit conditions	14
V.1.10 V.1.11	Operation on low-loads	14 15

SUMMARY (continued) Page			
VI	FUNCTIONAL DESCRIPTION OF TEA2019	15	
VI.1	INTRODUCTION.	15	
VI.2	BLOCK DIAGRAM	16	
VI.3	DIFFERENCES BETWEEN TEA2018A & TEA2019	17	
VI.3.1	Oscillator	17	
VI.3.2 VI.3.3		17 17	
VI.3.4	PLL	18	
VI.3.4.a		18	
VI.3.4.D VI.3.4.C	PLL input signal.	10	
VI.3.4.c1	Transistor turn-off Signal : T _{SWO}	19	
VI.3.4.C2	Characteristics of the PLI	19 19	
VI.3.4.d1	Synchronization.	19	
VI.3.4.d2	2 Capture Range	19	
VI.3.4.e VI.3.4.f		20 20	
VI.3.4.g	Holding range	20	
VI.3.5	Synchronization Signal and the Input Filter.	20	
VI.4	APPLICATIONS	21	
VI.4.1 VI 4 2	TFA2019 Configuration for Power Boosting	21	
VI.4.3	Monitor Application	22	
VI.5	SYNCHRONIZATION SIGNAL TRANSMISSION	23	
VI.6	APPLICATION VARIANTS	24	
VI.6.1	Regulation by Optocoupler	24	
VI.6.2 VI.6.3	V Generator.	24 24	
VI.6.4	Application without Demagnetization Sensing	25	
VI.6.5	Full Shut-down at Overload. Oscillator (TEA2018A only)	25 25	
V1.0.0		20	
VII		26	
VII.1		26	
VII.Z	I KANSFURIVIER CALCULATION & POWER SEMICUNDUCTURS SELECTION	21	
vii.5		20	

I - INTRODUCTION

The aim of this application note is to provide the designer with information on how to design and implement a simple and low-cost switching power supply around the TEA2018A SMPS Controller.

This publication has been sub-divided into 3 distinct sections, namely :

- An overview of the current mode regulation
- Detailed description of TEA2018A characteristics
- Application example of a 30W discontinuous mode flyback converter operating directly on 220V_{RMS} mains voltage.

This document also covers a description of **TEA2019** which replaces the **TEA2018A** in appli-

cations requiring power transistor turn off synchronization with an external signal.

This function is particularly useful in video applications where the switching transistor turn off is synchronized with the line flyback signal.

SPECIFICATION OF A TYPICAL APPLICATION

- Discontinuous Mode Flyback
- Switching Frequency : up to 40kHz
- Power : the power handling capability is determined by the amount of available base current. Assuming a forced gain of 6 for the power transistor : $P_{MAX} \approx 60W$ (TEA2018A)

≈ 90W (TEA2019)

Symbol	Function	Unit
f	Switching Frequency	Hz
fosc	Oscillator free-running Frequency	Hz
f _{REF}	Reference Frequency (TEA2019)	Hz
lout	Output Current	A
l _P	Primary Current	A
ls	Secondary Current	A
LP	Primary Inductance	Н
Pout	Output Power	W
Т	Switching Period	s
T _{REF}	Reference Period (TEA2019)	S
ton	Transistor ON time	s
t _{ON(L)}	Conduction time fixed by current regulation	s
t _S	Power transistor storage time	s
V _{AC}	Mains RMS Voltage	V _{RMS}
V _{BE}	Power Transistor base-emitter voltage	V
VIN	Input DC voltage	V
Vcc	Positive supply voltage	V
V _{CE}	Power transistor collector-emitter voltage	V
V _{OUT}	Output Voltage	V
ΔI_{CHARGE}	Average current delivered by the PLL of TEA2019	A
η	Power supply efficiency	%

II - TABLE OF UNITS AND SYMBOLS

III - CURRENT MODE REGULATION

III.1 - DESCRIPTION (see Figure 1)

In current mode operation, the regulation is performed by monitoring the peak current through the power switch (switching transistor).

- At every period, the conduction of the power transistor is initialized by a clock signal issued from the oscillator.
- The power transistor is turned-off when its collector current reaches the threshold level fixed by error amplifier.

The main advantage of *Current Mode Regulation* in *Discontinuous Mode Flyback Configuration* is that it offers an efficient rejection of all input voltage variations.

The peak current value through the power switch, at constant output power, is independent of the input voltage value.

$$P_{OUT} = \frac{1}{2} \cdot L_P \cdot \left(I_{PEAK}\right)^2 \cdot f \cdot \eta$$

Variations of the input voltage have no effect on the error amplifier output voltage (see Figure 2).

Figure 1 : Current Mode Control

Figure 2

IV - FUNCTIONAL DESCRIPTION OF TEA2018A

IV.1 - BLOCK DIAGRAM

(all values given in the following block diagram are typical values).

IV.2 - OSCILLATOR AND MAXIMUM DUTY CYCLE IV.2.1 - Simplified Diagram

Figure 4

IV.2.2 - Waveforms

IV.3 - ERROR AMPLIFIER

- The error amplifier gain is internally fixed at 30dB typical value.

Internally implemented compensation networks set the frequency response characteristics.

- Voltage Reference : The value of the reference voltage applied to the inverting terminal is 2.4V.

Figure 6 : Error Amplifier Frequency Response Characteristics

IV.3.1 - Functional Behaviour on Low-load

When the feed-back voltage exceeds the regulation range, the comparator output remains in high state thereby avoiding the initiation of any new conduction cycle (see Figure 7)

Consequence : On low loads, the conduction frequency becomes lower than the oscillator frequency.

IV.4 - CURRENT MEASUREMENT & LIMITATION

Peak current through the power switch is set by the error amplifier output voltage.

Clamping the amplifier output voltage at 0.63V will result in limiting the I_{SENSE} pin voltage at 1V level (see Figure 8).

In current limitation

$$\begin{array}{l} V^{+} = 1.23V - V_{BE} = 0.63V \\ V^{-} = V_{3} + (V_{REF} - V_{3}) \displaystyle \frac{R1}{R1 + R2} \end{array} \qquad \Rightarrow V_{3} = -1V \\ \end{array}$$

IV.4.1 - Disabling the Current Monitoring Function

During oscillator saw-tooth flyback, the output of the PWM comparator is disabled and consequently:

- The minimum conduction time t_{ON(min)} required to discharge the snubber network is fulfilled whatever the status of I_{SENSE} input at the beginning of conduction cycle (T1 period on waveforms of Figure 9).
- All parasitics such as those generated by the recovery of secondary-connected diodes (without RC filter) are eliminated (period T2 on Figure 9).

Figure 9

IV.5 - DEMAGNETIZATION MONITORING

No new conduction cycle is allowed as long as the Pin 7 voltage remains higher than 0.1V.

When used in *Discontinuous Mode Flyback* configuration, this function will inhibit any new conduction as long as the transformer is not fully demagnetized. It is obvious that this function offers efficient security in case of overload and short-circuits.

Figure 10 : Demagnetization Sensing

Comments :

- Demagnetization monitoring feature can be used to implement an on-off function.
- This function is disabled by grounding the Pin7.

Figure 11 : Waveforms

IV.6 - THERMAL PROTECTION

When the junction temperature exceeds +150°C, an on-chip protection device will inhibit any new conduction.

IV.7 - TEA2018A BEHAVIOUR AS A FUNCTION OF V_{CC}

Figure 12 : V_{CC} Monotoring Circuit

Figure 13 : Waveforms

IV.8 - OUTPUT STAGE

(power transistor base drive)

The TEA2018A has been designed to provide direct drive to bipolar power transistors.

Figure 14 : Simplified Diagram of the Output Stage

IV.8.1 - Transistor Turn-on

A pulse current " $I_{B(ON)}$ " provides for rapid transistor turn-on. The duration of this pulse is equal to the oscillator saw-tooth fall time.

The value of this current is : $I_{B(ON)}\approx 1V/R_B$

IV.8.2 - Proportional Base Drive

Once the turn-on current pulse $I_{B(ON)}$ has been issued, the internal current recopy device of TEA2018A will output a voltage V_{OUT} such that :

IV.8.3 - Transistor Turn-off

 $V_{OUT} = V_3 + V_{BE}$

 $V_3 = R_E \cdot I_C$

 $V_{OUT} = V_{BE} + R_B \cdot I_B$

The power transistor is turned-off by the application of a negative base current. A 500ns typical interval duration between the positive stage turn-off and the negative stage turn-on, will prevent simultaneous conduction of complementary output stages and also abrupt transistor turn-off.

 \Rightarrow Forced gain =

 $\frac{I_{C}}{I_{B}} = \frac{R_{B}}{R_{E}}$

IV.8.4 - Minimum Conduction Time

In order to allow the discharge of snubber network, each conduction cycle has a minimum duration equal to toN(min).

Figure 16

V - APPLICATION EXAMPLE V.1 - CUSTOMIZED APPLICATION DESIGN V.1.1 - Specifications

Output Power	$3.3W \le P_{OUT} \le 30W$
Effective Input Voltage	$176 V_{RMS} \le V_{AC} \le 245 V_{RMS}$
Input Voltage for Start- up and Regulation	$200~V_{DC} \leq V_{IN} \leq 350~V_{DC}$
Regulation Input Volt- age after Start-up	$130~V_{DC} \leq V_{IN} \leq 350~V_{DC}$
Transistor Reflected Voltage	V _R = 210V
Switching Frequency	f = 27kHz
Expected Efficiency	η = 70%
Output Short-circuit Pro- tection	Yes
Open-load Protection	Yes
2 Outputs	(5V, 2A), (12V, 1.5A)

V.1.2 - Calculation of Power Elements (see also Section VII.1)

• V _{IN} (min.) = 200V	• $\frac{t_{ON(L)}}{T} = 0.426$	
where t _{ON(L)} = conduction time fixed in current limitation mode		
• I _{P(AV)} = 0.214	• I _{P(PEAK)} = 1A	
• L _P = 3mH	• Pout(min.) = 2.65W	
• 5V output : $\frac{\text{ns}}{\text{np}} \le 0.029$	$I_{S(PEAK)} = 9.4A$ \Rightarrow Diode : BYW98-50	
• 12V output : $\frac{\text{ns}}{\text{np}} \le 0.061$	$I_{S(PEAK)} = 7.05A$ \Rightarrow Diode : BYW98-50	
 Transistor selection Ic (max.) = 1A V_C (max.) = V_{IN} (max.) + V_R + V_{SPIKES} ≈ 800V_ 	\Rightarrow BUV46A	

V.1.3 - Transistor Switching Aid Network

Figure 17

V.1.4 - Demagnetization Sensing

a. Risk of flux runaway without demagnetization sensing (see Figure 18)

In the absence of demagnetization sensing, the converter will operate in continuous mode flyback at power supply start-up and also in the case of overloads.

Due to the minimum conduction time imposed by TEA2018A, there will be risk of flux runaway within the transformer and the current through the transistor.

Combining $t_{ON(min)}$ and *demagnetization* sensing functions, will yield highly secure operation ensuring the following functions :

- magnetic flux monitoring
- efficient discharge of snubber networks
- b. Implementing the demagnetization sensing (see Figure 19)

The winding used for circuit power supply will also reflect an image of the induced flux. The value of the resistor " R_{DS} " used for this function is not critical and can fall within : 10k Ω < R_{DS} < 47k Ω range.

No new conduction cycle may be initiated as long as the transformer is not fully demagnetized. On start-up, and in the case of overloads, the demagnetization sensing function will modify the frequency of the conduction cycles accordingly.

Figure 18

TEA2018A - TEA2019 APPLICATION NOTE

c. Damping network (see Figures 20 and 21) Once the transformer has been demagnetized, positive voltage oscillations produced by the discharge of resonant"L_P.C" network may result in unwanted activation of the demagnetization monitoring function.

To prevent this problem, all that required is to damp the voltage oscillations, as shown in Figure 21, through " $R_D - D_D$ " network where diode D_D "shunts" the resistor " R_D ".

d. Transformation ratio condiderations

On initial start-up, due to demagnetization monitoring function, the value of conduction frequency will rise in multiples of the normal operating frequency "f" as illustrated in Figure 22.

Employing a conventionally calculated transformer, the converter will stop operating at "f/2" frequency (see Figure 23).

Figure 20

SGS-THOMSON MICROELECTRONICS

Figure 21

Figure 22

Figure 23

At frequency "f/2" :

$$P_{1/2} = \frac{1}{2} \cdot L (IP)^2 \cdot \frac{f}{2} = \frac{P_{Max.}}{2}$$
$$V_{1/2} = \frac{V_{OUT}}{\sqrt{2}}$$

The converter operating frequency will switch from "f/2" to "f" if the following condition is satisfied :

$t_{ON} + t_{DM} < T (@ f/2 frequency)$	(1)	
$\phi_{\text{M}} = L_{\text{P}} \cdot I_{\text{P}} = V_{\text{IN (Min.)}} \cdot t_{\text{ON(L)}}$	(2)	
where $t_{ON(L)}$ = conduction time fixed in current limitation mode		
$\phi_{M} = L_{S} \cdot I_{S} = \frac{ns}{np} (L_{P} I_{P}) = \frac{V_{OUT}}{\sqrt{2}} \cdot t_{DM}$	(3)	

Combining (1), (2) and (3) :

$$\frac{ns}{np} \leq \frac{\left[\ VsubOUT + V_D \ \right] \left[\ T - t_{ON(L)} \ \right]}{\left[\ V_{IN \ (Min.)} \ t_{ON(L)} \ \right] \sqrt{2}}$$

V.1.5 - Oscillator

The value of capacitor $\ensuremath{^{\circ}C_t}\xspace^*$ is calculated as a function of :

- $t_{ON(min)}$: $\approx 3\mu s$
- $t_{ON(min)} = t_{IB(ON)} + t_{STORAGE}$
- t_{STORAGE} ≈ 1.5μs
- $t_{IB(ON)}\approx 0.66\ Ct$. 2000

The value of resistor R_t is calculated as a function of period T as follows :

 $C_t = 1.2nF$

 $C_t \ge 470 pF$

 $T = 0.66 \text{ C}_t \text{ (R}_t + 2000) = 37 \mu s \Rightarrow \text{Rt} \approx 47 \text{k}\Omega$

V.1.6 - Power Transistor Base Drive

The "R_e" resistor is calculated as a function of "current limitation" and the resistor "R_B" as a function of "forced gain". Resistor "R_P" can be connected to Pin 3 "I_{SENSE}" to protect the device against mains-generated transitional overvoltages.

Figure 24

Current Limitation

$$\begin{split} V_3 &\approx 0.88 \text{V} \text{ (current limitation threshold value)} \\ V_3 &\approx \frac{R3}{R_P + R3} \cdot R_E \cdot I_C \Rightarrow R_E = 1 \Omega \qquad \begin{array}{c} R_P = 100 \Omega \\ R_3 = 1 \Omega \\ I_C \ (\text{Max.}) = 1 A \end{array} \end{split}$$

Gain calculation

$$\begin{array}{ll} I_{C\ (Max.)}=1A & \Rightarrow & Transistor: BUV46A \\ \Rightarrow & Forced\ gain\approx \frac{I_{C}}{I_{B}}=9 \\ V_{3}=R_{B}\cdot I_{B}, \ V_{3}=\frac{R3}{R_{P}+R3}\cdot R_{C}\cdot I_{C}\Rightarrow R_{B}=8.2\Omega \end{array}$$

V.1.7 - Self-supply

Power supply start-up

A high value resistor inserted between the "high voltage source" and "Vcc" capacitor will charge up this capacitor upon the initial supply start-up.

The TEA2018A starts operating at V_{CC} \approx 6V (typ). On-chip implemented hysteresis of 1.1V (typ) will trigger the self-supply function.

Figure 25

a. Positive self-supply : V_{CC} (see Figure 26) The V_{CC} supply is provided by a flyback-type winding. The number of turns "n" is selected to yield a voltage "V" of approximately 10V. Within the self-supply arrangement, the resistor "R_F = 15 Ω " in combination with the capacitor of V_{CC}, form a filter network which attenuates mains-generated voltage spikes. Note that in the absence of this filter, the energy generated by voltage spikes can often satisfy the power supply requirements of the

TEA2018A in case of any short-circuit on low-

SGS-THOMSON MICROELECTRONICS

voltage windings.

Figure 26

b. Positive self-supply : V⁻ (see Figure 27)
 A negative supply voltage "V⁻" is required for efficient transistor turn-off.

This voltage is generated by an auxiliary winding connected in forward arrangement.

The "zener diode" will clamp this negative voltage and make it independent from the input voltage ($V_{IN} > 200V$).

The "Cs" capacitor will accelerate V- settling process upon the initial power supply start-up. Resistor "Rs" is used to limit the current upon the negative power supply setup.

V.1.8 - Regulation

As illustrated in Figure 29, the self-supply winding is also used for voltage regulation.

To avoid the power drawn by TEA2018A to influence the regulation, the supply for regulation is generated by a source independent from " V_{CC} ". The RC filter attenuates the parasitics due to voltage spikes generated by switching. However, the cut-off frequency of this filter must be sufficiently high so as to avoid excessive slow-down of the regulation loop response.

V.1.9 - Operation under Overload & Short-circuit Conditions

In case of any overload, the secondary voltage will fall, circuit power supply will drop below $V_{CC(STOP)}$, consequently TEA2018A stops operating and its

power consumption will fall under the current supplied by the start-up resistor.

The capacitor of " V_{CC} " begins charging up and a new conduction cycle will be initiated as soon as " V_{CC} " reaches " $V_{CC(START)}$ " level.

The system will function in relaxation mode as long as the overload persists.

V.1.10 - Operation on Low-loads

When the Ouput power falls below :

$$P_{OUT (Min.)} = \frac{\left[V_{IN} \cdot t_{ON (Min.)} \right]^2}{2 \cdot L_P} \cdot f \cdot \eta$$

The regulation becomes incompatible with the operating frequency "f", conduction cycles occur in a random fashion and at a frequency lower than "f". Note : This event has no impact on the power supply reliability.

Figure 27

V.1.11 - Complete Application Diagram

VI - FUNCTIONAL DESCRIPTION OF TEA2019

VI.1 - INTRODUCTION

The TEA2019 has an internal architecture similar to TEA2018A and offers the following additional features :

- a true positive current source providing linear charge-up of the timing capacitor "Ct"
- an internal PLL which allows synchronization of the power transistor turn-off with an external clock signal
- power transistor desaturation monitoring
- possibility to dissipate externally the power required for transistor base drive

2018A-41.EPS

VI.2 - BLOCK DIAGRAM

VI.3 - DIFFERENCES BETWEEN TEA2018A AND TEA2019

VI.3.1 - Oscillator (see Figure 33)

The oscillator saw-tooth waveform is linear. The capacitor " C_t " charging current is constant and is determined by the value of resistor " R_t "

Figure 33

If during the power transistor conduction period the Pin 4 voltage exceeds 3.2V, the transistor would be turned-off until the next conduction cycle. To disable this function, Pin 4 must be grounded.

VI.3.3 - Output Stage (see Figure 35)

An external resistor connected between V_{CC} and V_{AUX} will dissipate a portion of the power required by the base drive. The value of this resistor is calculated to be as large as possible but appropriately dimentioned to avoid the saturation of the output stage Q1.

Figure 35

SGS-THOMSON

NICROFLECTRON

ĹŢ,

$$R = \frac{V_{CC} - V_{BE} - V_{CE(Min.)}}{I_{B (Max)}} - R_{B} \text{ where } V_{CE(Min.)} \Rightarrow 1.5V$$

- Power dissipated in Q1 (flyback) :

$$\mathsf{P} = \frac{\mathsf{t}_{\mathsf{ON}}}{\mathsf{T}} \left[\ (\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{BE}}) \cdot \frac{\mathsf{I}_{\mathsf{B}(\mathsf{Max}.)}}{2} + (\mathsf{R}_{\mathsf{B}} + \mathsf{R}) \cdot \frac{\mathsf{I}_{\mathsf{B}(\mathsf{Max}.)}^2}{3} \right]$$

- Power improvement compared to TEA2018A

$$\frac{\Delta P}{P} = \frac{2 \cdot R \cdot I_{B(Max.)}}{3 \left(V_{CC} - V_{CE} \right) - 2 \cdot R_B \cdot I_{B(Max.)}} = \frac{2 \left(V_{CC} - 3.5 V \right)}{V_{CC} - 5 V}$$

at $V_{CC} = +9V \Rightarrow \frac{\Delta P}{P} = 0.5$ i.e. 50%

VI.3.4 - PLL

In a discontinuous mode flyback configuration, the power transistor turn-off produces significant amount of noise. It is therefore interesting to synchronize this event with an external signal. Since the transistor turn-off instant in current mode

Figure 36

operation is generally unknown, consequently, only phase and frequency locking of the oscillator will enable to synchronize the transistor turn-off time without disturbing the voltage regulation loop.

- a. Operating principles (see Figure 36)
- Oscillator phase and frequency can be accurately controlled by adjusting the charge current of "Ct" capacitor. The PLL behaves as a current generator, the direction and the magnitude of which are function of the phase difference between transistor turn-off and the synchronization signal.
- b. Internal structure (see Figures 37 and 38) The major building block of the PLL is an analog multiplier whose two inputs are the synchronization signal and power transistor turn-off monitoring sig-nal. Multiplier output signal has a complex spectrum; a low-pass filter is employed to extract the DC and low-frequency components.

The PLL will source or sink the maximal current when the shift interval between synchronization signal and the transistor turn-off equals $t_s/2$.

Figure 38 : Synchronization Configurations Waveforms

- c. PLL input signal
 - c1. Transistor turn-off Signal : T_{SWO} Due to transistor storage time, the PWM comparator will generate a pulse which will be used as T_{SWO} signal (see Figure 39).
 - c2. Synchronization Signal The characteristics of synchronization signal are outlined in section 6.3.5.

Figure 39

- d. Characteristics of the PLL
 - d1. Synchronization (see Figure 40) When synchronization occurs, the average current delivered by PLL is equal to ΔI_{CHARGE} required for frequency compensation.
 - d2. Capture Range : | fo fREF| MAX (see Figure 41) The signal delivered by PLL prior to synchronization has | fo - fREF| component.

 G_{dB} is the overall gain of multiplier and filter stages. Phase locking is possible if the frequency difference | fo - f_{REF}| satisfies the following relationship:

$$G_{dB|f_0-f_{REF}|} \ge 0 dB$$

Figure 40

2018A-48.EPS

- e. Output Filter Calculation For stability reasons, the output filter is calculated at gain G1 \approx 0 dB.
 - "f2" frequency determines the capture range.
 - "f3" frequency is equal to the free-running frequency "fo".
 - The "G_O" gain is rather complex to evaluate. By approximation, it is proportional to the switching transistor storage time "t_S". At t_S = 2μ s, the gain G_O \approx 24dB
- f. Numerical Application The following calculations yield the optimum
 - value of capture range :
 - $f_0 = 15.6 \text{kHz}$ (switching frequency)
 - $f_2 = 2.2$ kHz (this is the selected capture range $\pm 8\mu$ s with respect to 64 μ s period)

G1 = 0dB , V_{CC} = 8V , t_S = 2 μs , C_t = 1.5nF, R_t = 56kW , G_O = 24dB, R = R_t yields excellent noise immunity.

$G_0 - G_1 = -20 \log \frac{R1}{R + R1}$	$\Rightarrow R \approx 3.9 k\Omega$
$f_2 = \frac{1}{2\pi R1C1}$	\Rightarrow C1 \approx 22nF
$f3 = \frac{R + R1}{2\pi \cdot C \cdot R \cdot R1}$	\Rightarrow C \approx 3.3nF

g. Holding range

Once the capture occurs, the free-running frequency " f_{OSC} " can rise within the holding range without causing loss of synchronization. When synchronization is achieved, the filter no longer introduces any attenuation and thus the holding range becomes larger than the capture range.

The holding range is given by :

$$\Delta T = T_{REF} \cdot \frac{1}{1 + \frac{0.33 \cdot V_{CC} \cdot C_{T}}{I_{PLL} \cdot t_{S}}}$$

Where:

 T_{REF} : the period of synchronization signal I_{PLL} : the maximum current the PLL can source or sink (0.7mA typ)

VI.3.5 - Synchronization Signal and the Input Filter

The synchronization signal applied to PLL input (Pin7) must respect the following conditions :

Figure 42

The TEA2019 has been particularly designed for video applications where the synchronization signal is obtained from the flyback signal generated during the line flyback.

Figure 43 illustrates the configuration arrangement used in such applications.

Figure 43

VI.4 - APPLICATIONS

VI.4.1 - Typical Application with Synchronization

VI.4.2 - TEA2019 Configuration for Power Boosting

Figure 45

Comment : V⁻ voltage is generated by the auxiliary winding.

VI.4.3 - Monitor Application

VI.5 - SYNCHRONIZATION SIGNAL TRANSMISSION

This signal is often generated from the secondary of the power supply, and therefore requires galvanic isolation.

Two solutions outlined below are both appropriate :

In this configuration, the optpcoupler is used for the transmission of both, feed-back voltage and the synchronization signal.

VI.6 - APPLICATION VARIANTS

VI.6.1 - Regulation by Optocoupler

Figure 49

VI.6.2 - V Generator

Figure 50

VI.6.3 - Overvoltage

VI.6.4 - Application without Demagnetization Sensing

If the condition given below is satisfied, the demagnetization sensing function can be omitted without any risk of flux runaway in case of short-circuits or at start-up.

	VIN (Min.)	T - t _{ON(Min.)}	$T - t_{ON(L)}$	
$(VOUT + VLOSS) \leq VLOSS$	$V_{\rm OUT} + V_{\rm LOSS} = V_{\rm LOSS} \frac{1}{V_{\rm IN (Max.)}}$	t _{ON (Min.)}	t _{ON (Max.)}	

Consequently, the damping network is no longer required and the "demagnetization sensing input" can be grounded.

VI.6.5 - Full Shut-down at Overload

In case of overload, the arrangement depicted below will completely shut-down the power supply. To re-start the system, capacitor "C1" must be discharged.

Figure 52

VI.6.6 - Oscillator (TEA2018A only)

VII - FIXED FREQUENCY DISCONTINUOUS MODE FLYBACK VII.1 - FUNDAMENTALS

An operating phase includes 3 phases :

- $0 \leq t \leq t_{ON}$: energy is stored within the primary inductance
- $t_{ON} \le t \le t_{dm}$: energy transfer toward the secondary winding
- $t_{dm} \le t \le T$: dead time, the transformer is fully demagnetized.

VII.2 - TRANSFORMER CALCULATION AND POWER SEMICONDUCTORS SELECTION

$V_{IN} \xrightarrow{I_P} V_{D} \xrightarrow{I_S} V_{D} \xrightarrow{I_S} V_{OUT}$ $(L_P, n_P) \xrightarrow{V_D} C \xrightarrow{R} V_{OUT}$ $V_{OUT} = V_{IN} \frac{t_{ON}}{T} \sqrt{\frac{R}{2L}}$	$\frac{1}{P} \xrightarrow{V_{K}} \frac{V_{R}}{V_{R}} \xrightarrow{I_{P(AVERAGE)}} t$
Maximum operation duty cycle :	
(1) $\frac{t_{ON(L)}}{T} = \frac{V_R}{V_R + V_{IN (Min)}}$	(2) $\frac{t_{ON(L)}}{T} = \frac{V_R}{V_R + \sqrt{2} \cdot V_{IN (Min.)}}$
Maximum average primary current :	$I_{P (Max.)} = \frac{P_{OUT (Max.)}}{\eta} \cdot \frac{1}{V_{IN (Min.)}}$
Maximum peak primary current :	$I_{P(PEAK)} = 2 I_{P(AV)(Max.)} \cdot \frac{T}{t_{ON(L)}}$
Primary inductance :	$L_{P} = V_{IN (Min.)} \cdot \frac{t_{ON(L)}}{I_{P(PEAK)}}$
Maximum transformation ratio :	
(1) $\left(\frac{n_{S}}{n_{P}}\right)_{Max.)} = \frac{\left[V_{OUT} + V_{D}\right]\left[T - t_{ON(L)}\right]}{V_{IN (Min.)} \cdot t_{ON(L)}}$	(2) $\left(\frac{\text{ns}}{\text{np}}\right)_{\text{Max.}} = \frac{\left[V_{\text{OUT}} + V_{\text{D}}\right]\left[T - t_{\text{ONL}}\right]}{V_{\text{IN}}\left(\text{Min.}\right) \cdot t_{\text{ON(L)}} \cdot \sqrt{2}}$
Peak rectifier current :	$I_{S(PEAK)} = 2 \frac{T}{I_{OUT} \frac{T}{(t_{dm} - t_{ON})}}$
• Minimum power transfer at frequency "f" :	$P_{\text{OUT (Min.)}} = \eta \cdot \frac{\left[V_{\text{IN (Max.)}} \cdot t_{\text{ON (Min.)}}\right]^2}{2 \cdot L_P} \cdot f$

VII.3 - MULTI-OUTPUT FLYBACK

All transformer windings undergo the same flux change of $d\phi/dt$. Regulation of any output causes regulation of all other windings.

Figure 56

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

